SURFACE FRICTION AT A PERMEABLE PLATE

V. I. Voronin and A. E. Blazhkov UDC 532.526.2

An approximate solution is proposed for the problem of determining the friction at a perme-
able plate. Expressions are given for the tangential stresses with continuous uniform injec~
tion through a transverse slot.

The influence of injection (evacuation) on surface friction in laminar flow past a plate has been inves-
tigated by many authors [1-3] with the aid of integral relationships or numerical methods.

Here we propose a simple approximate relationship in terms of hypergeometric functions.

When u ~ T, a compressible laminar boundary layer is described in u, £ variables by the equation
L ®Z w0z ‘

, where Z:M u:ﬁ,gxi (1)

awr L 3 Vo, ' e L
The boundary conditions are 8Z/0u = V}f(g)/\/vou{,(J foru=0,Z=0foru=1,7 = « for £ = 0.

We represent the desired solution in the form Z = 2}, + Z,, where Zy, = f"/VZL is the Blasius solution
for an impenetrable plate; Z, is the solution that depends on injection.

In the linear approximation (Z, small), the problem reduces to determination of Z; from the equation

Z
__azzl ——u,Z]_:I/lE ——a :

2
du? ¢ 2
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It is a fairly complex matter to find an exact solution of (2). We can find an approximate solution, however,
replacing f" by a certain approximating function

[ ~0.332 y/ T—d. &
Then making the substitution of variables t = u®, we can write Eq. (2) as
*Z 2 0Z 0z 4
t(1—1 L= (1—t L _ 7, =t —L (4
(1=p S+ (=) b —Z= 8

Solving by separation of variables, we obtain a system

HI-0Q @O+ 2 (1=HQ O—(n+ DA =0, (5)
GE _n ©
G(E) &
The_solu.tion of (6)is G(§) =¢% (n=0,1,2,...). The hypergeometric equation (5) has the solution [4]
Q= AQ. (1) + BQ, (). (7

Here

—1+i1 38n+)—1 —15iV3bn+H—1 2
leF(a,[S,v;t):F[ 3 , 6 » RS ti,

Q=t"F(ay, By v ) =t F(I—y+a, I—y+p, 2—v; 1)
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Assuming that the solution Z, is regular in £ for u = 0,

PVT%, we find a solution to (4):
o Yoo -
4 ' ‘ i Z = 2 (Aann + B,Q,,) & (8}
n=0

If Vi(£) is an analytic function, it is easy to determine

By by expanding the function (9 Zi/au)u_:0 into power

z \ ) series equating the coefficients on identical powers of
— \ O\ £. The coefficients A, are found from the conditions

on the outer boundary:

0 / 2 3 6 An=~~Qﬂ‘—QBn

Fig. 1. Comparison of tangential stresses for Qin (1)

uniform evacuation: 1) Lew and Fanucci; 2) re- . .

sults of the present study. Iy —a,—B) Py —a) T (y—f) ‘
Pn—a) Ty —B)T(y—a =BT (y) "

For uniform injection, for example (V{ = const)

B(,:J—O—(_Q—, B, =0, B,=0, ...; 4, =—0.640 B,
V vyt
As a consequence
Vo .
Zy = — e (Qyp—0.640 Q).
Vvt

Going over to the variables x*, y*, we find the tangential stress on the plate when {u = 0),

v
. Vol *
= 0332 pol/ S — 0,640 paVi .

Comparison with the exact solution {2] shows that up to ¢ = 2 we have good agreement (see Fig. 1). When
the gas is injected through a transverse slot located a distance L from the front of the plate, if we let y
=In{ in (4), a solution can be obtained by the operational method. In representation space, we obtain Eq.
(5), where n must be replaced by the operator p. The coefficients A and B are found from the appropriate
boundary conditions. It is very difficult to find the original. It is easy to find the solution Z,(0, ¥} for the
tangential stress at the plate itself (u = 0). In fact, the function

Ll —o =) rTv—a)iy—0 p
rM iy, —a)(y,—B) T (yv—ao—p)

_ T(yoepr ()l (P)sinmasinap Vo 1 e exo

- 72T (y) V’Vgum p [ exp (— pyL i

is meromorphic with simple poles @ = —n or, what is the same thing, Py = —(n—-1/6)>~35/36 (& = 0 is not a
pole).

Z, (0, p=<=Q(0, p)=A=

Employing the second Heaviside theorem, we determine Z,(0, ¥) and then, going over to the variables
x*, y*, the tangential stress

: N opsots V3 vpg N [fn— L) =L (o ) o fu— L)
T; = 0.332 p”]/ e —-0.6:)94ST VopoumLMn 6) % n 6/= 3)

n=1 -

132 35 1y2 35
) n——) -+ - , .n——-«) +—’
x( L+h)( 6) ’ —*L)( v ( 1)12 35 (9

- —
6 36

The series in (9) converges when x*> L; when x*> 2L, the first two terms will be controlling, It ig not
difficult to generalize the result to the case of several slots.
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NOTATION

are the trangverse and longitudinal coordinates;

are the Dorodnitsyn variables;

are the tangential and Dorodnitsyn-"distorted" normal velocity components;
is the Blasius function;

o = (v§/U)V(2Ux* T /CroT*) is the injection parameter in Lew and Fanucci notation [2];

p
h

Subs

is a Laplace operator;
is the width of the slot;

standard notation is used for the remaining quantities.

cripts

0 are the conditions at the wall;
o are the conditions in the undisturbed flow;
* are dimensioned quantities.
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